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Momentum, Angular Momentum, and Equations of 
Motion for Test Bodies in Space-Time with Torsion 

Fang-Pei Chen I 
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The definitions and transformation properties of momentum and angular 
momentum of test bodies possessing both macroscopic rotation and net spin are 
discussed. The equations of motion for momentum and angular momentum of 
test bodies are derived and written in a covariant form when the energy-momen- 
tum tensor is symmetric. 

1. INTRODUCTION 

In a previous paper (Chen, 1990) (hereafter referred to as I), the author 
derived the following conservation laws (or identities) for matter fields from 
the most general functional form of  Lagrangian density ~M in space-time 
with torsion: 

where 

I1~ ,uDq --f i  f ,~  - F ~  v ~  - ~'~U ~" u ~ - " (1) 

O 
~-~ (s ~ = 2~to. ] + Fk,uls 2 + r%r (2) 

Z f = hivZi ~, Ztj = rlkjhkvzF 

O-elM ~ ( ~ M  I 
~rf = ah~ ax ~ \ah~.~) 
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All of Zr ,  Zv ~, and Z u are energy-momentum tensor densities of matter 
fields, but in different indices, and It:~ is called the generalized spin density 
in I; i , j ,  k ,  and other Latin letters are frame indices;/~, v, ~, and other Greek 
letters are coordinate indices. Zv~, (=gV~Z ~,) or Z• may be asymmetric in 
the general case. 

The aim of this paper is to derive the equations of motion for test bodies 
from equations (1) and (2). I shall treat the complex case in which the test 
bodies (e.g., neutron stars) may possess both macroscopic rotation and net 
spin. 

Papapetrou (1951) derived a set of equations of motion for test bodies; 
his equations are covariant with respect to the general coordinate trans- 
formations. However, Papapetrou's equations can only describe the behavior 
of test bodies possessing macroscopic rotation but without net spin, and 
those equations are suited only to the space-time of general relativity in 
which torsion does not exist. Yasskin and Stoeger (1980) derived another 
set of equations of motion for test bodies possessing both macroscopic rota- 
tion and net spin in space-time with torsion, but their equations are not 
written in a covariant form, i.e., they are suited only to special coordinates. 
The equations of motion derived in this paper are more general and simpler 
than Papapetrou's equations and Yaskin and Stoeger's equations. 

2. SOME DEFINITIONS AND RELATIONS 

The test body can be looked upon as a macroscopic matter field whose 
dimensions in 3-space are very small compared with a certain characteristic 
length; thus, the test body will describe a narrow tube in the space-time. 
According to the method developed by Papapetrou (1951), a line L which 
may represent the motion of the test body is chosen inside this tube. The 
coordinates of this line are denoted by X ~, they are functions of the proper 
time S along the line L, where d S = g ~ , v  d X "  d X  v. The tensor density fields 
~ ( x )  which describe certain properties of the test body are different from 
zero only inside the world tube. 

Define the quantities Q from ~ by the integrals 

~t,;t2""a.Q~]::(X) = U ~ f t Sx~ , rx  ~2 �9 �9 . 6a.~u~:~;(x)  da x (3) 

where 

~ x  ;l = x ~ _ X ~, U ~ - d X  ~ 
d S  
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The integration is carried out over the three-dimensional volume at a con- 
stant t = X  ~ (the speed of light is taken as unity). The quantities 

~,~2--~.~:::(x) 

are called the moments of order n for the field u~.-. ~...(x). 
Thus, the moments of order 0 and 1 for the energy-momentum tensor 

density field X~'(x) are defined, respectively, by 

and 

MvU(X) = U ~ f x~U(x) d3x 

~Mv~(X) = U ~ f Sx ~ ~VU(x) d3 x 

(4) 

(5) 

Note that ~ 0 since the integral refers to the hyperplane t =X  ~ and 
5x ~ = 0. Moreover, the moment of order 0 for the generalized spin density 
field ffxVU(x) is defined by 

(6) N;'u(X) = U ~ f ~ U ( x )  d3x 

where 

ff;t~u (x) = g;t,,g~Th~ h~ff u (x) 

Usually the macroscopic rotation angular momentum and generalized 
spin angular momentum of a test body are defined by 

L ; ' ( X ) -  XM"~ - ~-MX~ f uO - [ S x ~ V ~ 1 7 6  d3x (7) 

and 

N~v~ f S ~ ( X )  = uO = f~~  d3x (8) 

respectively. In I, S xv is denoted by C xv. Since the three space dimensions 
of the test body are very small and the rotation angular momentum is greater 
than the spin angular momentum in general for rotational bodies (e.g., 
neutron stars), it is supposed that all moments of order higher than 1 for 
the field 5EVU(x) and all moments of order higher than 0 for the field ~a~U(x) 
are vanishingly small and can be neglected. 
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By raising, lowering, or altering the indices of  the tensor density, we 
can rewrite equations (1) and (2) as 

~vg,u + (F~u _ 2 T,, u ~)~,,u _ �89 ~a, R,,tju ; = 0 

and 

E"tJu,u = 2~l<'m _ Faauf~aOt a -- r#  uca~u 

where T~,uV=g,,,,gVPT"u# and T~uB is the torsion tensor. 
Utilizing the relation 

we find that (1') becomes 

\t(~P J / 
where 

(1') 

(2') 

(1 ") 

u u _ d X U  

dS  

where 

A %u = TV,'u + T~Vu - Tu v~ = -AVu,, (9) 

Using methods similar to that of  Papapetrou (1951), it is not difficult 
to derive the following relations from (1") and (2'): 

v 0 V v ~ ou 

t-U-~ tto- ,3 
_ �89 u,,( UuS,,I~ + u M [upl) = 0 (10) 

UM" + l lM"a--~ ( ' M  "~ +~o ~ (=M "~ (12) 

d S.  n = 2M [-~] _ F-  N ~  _ Fn<wNU~U (13) 
dS 

N ~ "  = U ' S  "~ + 2 u M [-m (14) 
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I shall utilize these relations to find the equations of motion for test 
bodies. But before doing so, it is worth discussing the transformation proper- 
ties of M~u(X) ,  ZMvu(X) ,  and N ~ u ( X ) .  

3. THE TRANSFORMATION PROPERTIES OF M TM, aM ~', N a~', L ~,  
A N D  S a" 

In Appendix A I prove that under the infinitesimal coordinate trans- 
formations x u ~ x"' = x u + ~U(x) the quantities 

Q m U r . . ( y ~  

transform according to 

OXU~ OXU~ Q m m " ( y ~  - 
OX ,~, OX,~ 

and 

and znu 'm" ' tY~  

OX,t ~, OX,02 

OX ~, OX ~ 
Qgg~:: (x') 

+ ~_L_(ox.__ 2' ox.'  
OX ';~ \OX'"' OX '~ 

OX'th OX't32 

OX"' OX ~ 

d ( 1  cgX ~ OX u' OX m 

~ {/o ax,~ ox,~, ~x,~ 
cOX,Ol 

OX ~ , 

I & f V V l  V2"" ( "ITP\ 

OXV, OX~'~ 8X,~, OX,a~ 
~tnutu2""(X ~ = _ _  
~la2 "''~, I 

0X 'v, 0X'V2 aX ''~, ~X'~2 

( U ~ - OX~ " Q ~ . i I ( X ' )  (16) 
x kOX 'p UO 

respectively, it is assumed here that all moments of order higher than 1 are 
equal to zero. 

The transformation formulas of M TM, ~M TM, and N ~V" can be obtained 
from (15) and (16) immediately: 

ox  ~ ox"  ,o~ , o / ~ x  ~ o x " ] ~ u , o ~ r ~  
- - -  M (X) + - - - : / - -  

M " u ( X )  OX"  OX 't3 ~X'" \OX 'a OX '~ ' -  " - "  

d [ 1 OX ~ OX ~ OX u z~,~r 
(17) 

- ~  ~,~5 ~ ~x '~ ax"  ~ ' " " /  

~ X  ~u ~.~rvlv2.. . /v~ ~ 
x OX" ~ - �9  ~m~. . .  v ' , J )  (15) 
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aXV OX~' ( OXx gX OX~ (18) 
ZMVU(X)-~X,~ ~X,P \gX'P U ~ aX'P] 

02( ~ 02( ~ a X ' N ,  Oo~(x,)+3C(~X__2 ~X ~ ~X")~,,,~o~,,~,~.. 
N;u'u(X)=oX'~ 02( 'a 02( '~ 0.7( 'p \OX"  OX ''~ 02( 't3] " "  

d { 1  OX ~ OX ;t OX ~ OX u pN,,,,,tJ(X,)" ~ 
(19) 

dS'  ~U ~ 02( 'p 02( ''~ 02( ''~ OX 't~ ] 

Since it has been supposed that P N " r  ') can be neglected, (19) reduces to 

_ O X  ~ OX ~ OX" N,, ,~(X,)  (19') 
N;t~u(X) OX,~ OX ,,~ OX, t ~ 

The transformation formula of  S x~ can be derived from (8), (19'), and 
(14); we get 

Nx~~ 
S ~ v ( X ) -  uO 

_ 1 a X  ~ a X  ~ o OX u N,,~a#( y,.~ 
U o 02( ,,~ 02( ,,~ OX, t J - .  , . . ,  

_ 1 0 X  ~ OX ~ 02( ~ [U,oS,,,,~(X,)+2OM,t,,,~I(X,)] 
U ~ OX" OX ''~ 02( 'tJ 

OX ~ OX ~ 2 OX ~ 
- OX,~ OX '~ [ S ' ~ ( X  ') + .U- ~ --OX,a "M't~"1(X')] (20) 

In order to derive the transformation formula of  L z~, I write first a 
relation which enables XM~U(X) to be connected with U ~ ( X ) ,  L a v ( X ) ,  etc. : 

XM~u=l U ~ 2 U --6 (U"LU~ UUL~~ +�89 + UULXV) 

+ ZMt"ul-*'Mt";q-UMtVXl+ uX(~M~176 iv~ (21) 

This relation is proved in Appendix B: The transformation formula of  L x~ 
can be derived from (7), (18), and (21); we get 

XMV~ ) - ~Ma~ ) 
L;t*'(X) - uO 

_ l oxo (ox  / l xv oxo/] 
U ~ LOX '~ 02( '~ \OX" U ~ OX"] OX '~ OX '~ \OX 'p U ~ OX"/J 
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• ') + +�89 ,) + trpL,, 'o(x,)] 

+ PM '[~ol - ~M 'tap] - #M '[ap] -I- U'P(~M '[t~~ + aM'[~~ 

_OX~  OX ~ _ ~ O X "  OX ~ 
OX 'p OX'" L'P'~(X') + - -  - -  OX~ 

U ~ 

[OX ,,~ OX,t ~ \OX, p U ~ OX,p/ 

OX 'a OX'# \OX 'p U 00X'P/]"  

+ LeV(aM'["~ +/~M'[~~ (22) 

It is evident from (20) and (22) that S x~ and L x~ all are not tensors if 
the energy-momentum tensor is asymmetric. But in either case the energy- 
momentum tensor is symmetric or its antisymmetric part can be neglected 
on account of  PM't~m=0, (20) and (21) become 

OX ~ OX ~ 
S:t~(X) = OX,~ OX ''~ S"~'~(X ') (23) 

and 

OX ~ aX ~ 
L~"(X)  = - -  L'P'~(X ') (24) 

OX,p OX ,'~ 

respectively, i.e., they are tensors. 
Since physical theory requires always that angular momenta S ~v and 

L xv must be tensors, then, in the case of  asymmetric energy-momentum the 
definitions of  S z~ and L ~ for test bodies must be revised. If  the definitions 
(7) and (8) are preserved, the energy-momentum tensor must be symmetric 
or its antisymmetric part must be neglected; I shall consider only the case 
of  Z EvuJ = 0 in the following paragraph. 

In I the momentum of  test particles was defined by 

p v ( X )  = ~Z~~ dax (25) 
d 

Let  

g (X) 
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Since ~M vu = 0 for test particles, it is easy to demonstrate 

p~ f g~,(x)Z.~ d3x= f ~~ d3x (26) 

So the momentum of test particles can also be defined by (26). 
Utilizing (4), we can write the definition (26) as 

Mv~ 
p~(X)- uO (27)  

The transformation formula of M~~ can be obtained from (17) and (11): 

aX ~ aX~ aO__(~.XV 0X~ ,~  , 
- -  M ( X )  M~~ aX,, ~X,X \~X,~ ~7~ 

d [ 1 0 X ~  OXV OX~ 
dS' ~o aX, X aX,~ aX,p 

OX~ ~X~ [- M'a~ t- d (OM'a~ 

v O X  o ,t ,a,o , 

\ to 'pJ  "J " "J OX '~ \OX'" 

d [ _ l  OX'~ OX ~ OX~ zM,=a(X,)] (28) 
dS' ~o OX ~ OX,~ OX, t3 

Owing to ~M '=~ = 0 for the test particles, (28) becomes 

U~ OXV ,,~o , 
Mv~ = V '~ a - ~  M iX) (29) 

Hence 

M~~ aX" M'~~ OX v 
p ~ ( X ) -  uO aX '~ U' o aX '~p'~(X') (30) 

For the test particles, this means that pV(X) is a 4-vector. We point out that 
the relation (30) does not exist for test bodies because their ~M'~##0 
in (28). 

Since physical theory requires always that the momentum pV must be a 
4-vector, the definition of momentum for test bodies ought to be revised. 
Papapetrou (1951) demonstrated the following relation for test bodies with 
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symmetric energy-momentum tensor: 

OX, a U' o M'"~ ') + U'SL'"~ ') (31) 

Using this relation, I make the following definition of the momentum 4- 
vector for test bodies when 3; t~.l = 0: 

v 1 [ vo+tV 1UOL~) (32) p = - ~ M  Ipcr, / 

It is evident that the quantity m=p~U~, is a scalar. Owing to L ~ =  
- U  'v, we have 

DL,'U 
m=fU~=fUv+ U~U,,-- 

DS 

DL VU'~ =(pV + U u --~) U~=P~U~ (33) 

where 

and 

pv =p~ + Uu DS U ~ MY~ UaL'~~ + Uu DLVUDS 

(34) 

Papapetrou (1951) introduced the quantity pv in his equations of motion 
for test bodies and so did Carmeli (1982) and others. I would not like to 
introduce PV and shall use only p~ because pV is simpler than PV. 

4. THE M O M E N T U M  A N D  A N G U L A R  M O M E N T U M  
E Q U A T I O N S  OF M O T I O N  FOR TEST 
B O D I E S  W H E N  ~1r - 0 

In case the energy-momentum tensor is symmetric or its antisymmetric 
part can be neglected, 3; tvuj = 0; hence 

M~U=MU~; :tM{~,~] = O; A*'uM,~u=O 
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Then equations (10), (11), (13), (14), and (21) become 

d /'MV~ f v ] ~ . +  c~ 

M ~~ d {ZM~~ f "  ~ 

d s zv=-F ~ AWvU_ - ,~. �9 FV~uN ~ z  
dS 

Nz~. = U.  S zv 

and 

ZM~U 1 U z 
= -~ U--- 6 ( UVL "~ + UVL ~~ + �89 ( U"L  ;t" + UUL zv) 

respectively. 
From (36), (7), and M TM = M "~ we get an important relation: 

M V O _ _ _  . M ~ _  P ~ M ~ = 0  
U ~ U ~ M "~ + (L  "~) + kerr)  

We can also write (36) in the form 

M v~ d " M  v~ 

Therefore 

{o) 
M"~ = v "  - d r  + - ~  \ u o ] + " M ~ 

Chen 

(35) 

(36) 

(37) 

(38) 

(40) 

(36') 

+ - t t o ~ J - - ~  ~ 

+ \[o ' rJ  U ~  

__dL~v + U u dL  v~ U v dL ~~ 

dS  U ~ d S  U ~ dS  

(42) 

With the help of  (41), (7), and ~162 - v, equation (40) can be transformed 
into 

(41) 
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It is now possible to derive the equation of motion in a covariant form. 
From (37) and (38) we get 

d S ; "  = - (F;t,,uS"" + F~,,uS a'~) U u (43) 
d S  

This is the generalized spin angular momentum equation of motion for test 
bodies. 

The rotation angular momentum equation of motion for test bodies can 
be derived from (42), (34) and (39) without difficulty: 

D L  t~v U i, D L  vo U v D L  ~~ 
+ =0 (44) 

D S  U ~ D S  U ~ D S  

Since we have the relation (Papapetrou, 1951) 

1( { l ) I ~ ) ,,ol o,.o p~'= MU~ + P L'~~ a = MOO+ L,,Ou ~. .q 
u \ lo'A,J I t U ) \ tcrgu I D S  

(45) 

we can also write equation (44) in the form 

DL ~v 
- -  + UUp" - U "p~' = 0 ( 4 4 ' )  

D S  

o r  

dL uv 

dS tq ' t 'J  tlT't'J / 
(44") 

From (35), (32), (36), and (39) we can obtain the momentum equation 
of motion for test bodies: 

(46) 

after some elementary calculations, where 

R v v r , ~  at~u =gang t~ Our 

R~t3ur = F :~ F:t f i r , I  t - -  f l l l , r  + F ~ ' p p U P  fl  ~" - -  FZp~ F POu 

R~auv({" } ) =g,~;tgVrR;~am:( {" } ) 

;~ a z + x  p ;t p 
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A P P E N D I X  A 

Since U ~ = dX~ = dx~ and dS = dS', under the infinitesimal coor-  
dinate transformation x ~ - ,  x TM = x "  + ~U(x) we have 

Q t ~ # t r " f y ' ~  = U o f o-~tt,ttr" d 3 x  

_ i Ox,', a L , . .  "ax'"___L, 
dS' t3x'"' c3x ''2 ax ̀~' 

63Xt#2 
~,v, v2.-.w~ a3v, (A1) 

X . . . . .  ~z'/hP2"" t "+" I u .~, ~X a2 

and 

xomm-..tyx= uo f z ~,,~,2... r ~ala2 (X) d 3 x  

- ~ S  fdx,OSx,pOxX Oxm 
, axrp tgX tv~ 

c~x"2 ax,a~ dx,a2 
,v~v2... , d 3 x ,  x - -  ~a,ar-. (x)  (A2) 

~Xr+'2 axal tgx a2 

where 8 x Z = x X - X  ~t, 8 x ' a = x ' P - X  "p. 
When x ~ --, x '~, the world tube L and the representative point X of a 

test body are transformed into L' and X', respectively, (see Figure 1) and 
the hyperplane AB is transformed into the hypersurface A'B'. Note that 
x ' ~  '~ on A'B', although x ~  ~ on AB, but we can draw a hyperplane 
CD through X'; and enable that the time coordinate yO of every point y on 
it satisfies 3,o = X  ~. 

L 

Fig. 1 

~ t l f  J 
/ ~ f  j L 

/e' 
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where 

385 

Now consider two points y and x' on one world line; it is easy to find 

~X 'O 
x 'U=y" + u  * u' o (A3) 

Ut, u - -  d x  t# 

ds' ' ds' = gu.  dxU dx~ 

For macroscopic bodies there exist always the relations u;<<u ~ ( i= 1, 2, 3); 
using these relations, we can change (A3) to 

u*  Ox ~ 
x 'u - yU (A4) 

u ~ Ox '~ 6Y "~ 

where 8 y ~ ' = y ~  Y'~ and Y ' ~ = X  '~. 
From (A1), (A2), and (A4), one can prove the transformation formulas 

(15) and (16) after carrying out the integration over the hyperplane CD. 

APPENDIX B 

From the relation (12) we have 

U~ v" + U M";t) = U* (U M v~ + UU(*M "~ 

Two other relations may be written by taking the cyclic permutations of  the 
indices ~.v/~. Adding the first and second of  these relations and subtracting 
the third, we obtain 

2 U~ v~ - *M tvul + VM t.~l + " M  t~l) 

= U* (VM (uo) + UM (vo)) + U x (~M [~ol + u M ~ol) 

+ U ~ (ZM 0,o1 _ ~ M txol) + U ~ (z M [vo] _ ~M [xo]) (B 1) 

From (B1), (7), and the relation 

uO(~M ~uo) + UM~O) = U~MUOO + UUMVOO 

= U~ U~L ~~ + UUL ~~ 

one can easily prove the transformation formula (21). 



386 Chen 

ADDITIONAL REMARKS 

From (43) and (44") we can get the total angular momentum equation 
of  motion for test bodies: 

~s (Lat~ + Sat~)=-({:l.t } L'rt3 + { fllt } L"'r + Fa,,uS"t3 + F~,,uS'~) UU 

+p~ U s _ptJ U ~ (R 1) 

This equation also can be derived in the following way. When the energy- 
momentum tensor is symmetric, equations (1') and (2') reduce to 

Zv~,~, + t v IZ . . .  _ ,  Jr,~m,D ~'-~ "'-~u = 0 (R2) 
tO'] l  J 

and 

Since 

we have 

�9 ~Ou,~, = - F  ",~ulU'Ou - Ft~u~ ~ u  (R3) 

O (x,,Zut3 _ xOZU,~ ) = Z,~p_ ZO,~ + x,~Zut J u - xt3Zu" u 
Ox u , , 

0 (x.Zpu _ xpZ.u) = x.Zt~u,u _ x~Z~ u (R4) 
~X/t ,/t 

Utilizing (R4) and (R2), we can write (R3) in the form 

Ox l, 

~,~ ~,~.  ] (RS) 
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It is not difficult to derive the following relation from (R5): 

d ( S ~ P + L ~ )  U ~ ~0_UP ~o_ + ~ M ~ M - - ( r % s  ~ + r ~ . s ~  v ~ 

+ t a t ~ M ~ ' - { : p }  ) (R6) 

This equation is the sum of  (40) and (43), which is equivalent to (R1). 
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